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1. Introduction. Partial derivatives of modified Bessel functions with respect to 
the "index" variable occur in a number of investigations. A usefulillustration is pro- 
vided by a variation on Watson's integral [1] 

f1) I?dOKo(2zcos0) cos(2vO) = - {JI-,(z) I, (z) + I,(z) aI,(Z) 

where Ko denotes a modified Bessel function of the second kind. 
Oberhettinger [2] has previously discussed the degenerate cases H,(z)lav, 

V= 2. The related problem of computing OJ,(z)/Ov has been considered by 
Lee and Radosevich [3], who also present brief numerical tables. References to 
earlier work may be found in both of these papers. 

In the present paper we describe a tabulation of OI,(z)/av to 4D, for v = 3 

and z = .01(.01)5.00. This should be adequate for calculations requiring moderate 
precision. An analytical error discussion of sufficient generality to cover extensions 
to higher precision and other values of v is also included. We append an abridgment 
of this table, corresponding to z = .01 (.01 ) 1.00(.05)5.00. 

2. Analytical Preliminaries. We begin with the defining series representation 

(2) I~~(z) = (Z/2~)p Z (z/2)2m (2)( ) = (z/2 )M0 m! P(v + m + 1)' 

and immediately note the two limiting cases: 

(3) IP(z) - (/+] I z I<<1; F +1)' 

and 

(4) Ip(z) _ ez/\/27rz, z ? >> 1, I z I >> I v . 

By differentiation of (2) we obtain 

(5) aI=(z) I (z/2) Ip(z) - (z/2)p 
0 

(z/2)2m k(v + m + 1) 
49V ~~~M=0 m! P(v +m?1) 

which in turn yields the limiting case 

(6) aIv(z) - (z/2) {ln(z/2) - 41(i + v)} I << 1. 
3v P(v?+1) 

Furthermore, it may be shown that 

(I(z) - _ vz-3/2 eZ for I z I >> 1 and I z I >> I v 

Finally, we note the exact result 

, ~~~~~~~aip(z) | T 

Received August 15, 1962. 

162 



TABULATION OF THE FUNCTIONS aI,(z)/oV, V =- i 163 

Gathering together the information in (5)-(8), we then have the following 
qualitative picture of the behavior of ,I^(z),/v: 

v<0 v=0 v>0 

(9) z O+ -00 -00 0- 

Z> 00 + 00 0 -oo 

For the specific cases of interest here, we obtain from (5) 

aI,(z) 
a' v=+1/3 

(1Oa) = in (z/2)Il/3(z) - (z/2) 1131 -.147 857 57 + .519 020 49 (z/2)2 

+ .188 350 96 (z/2)4 + .024 234 (z/2)6 + 

aIv(z) 
a' v=-1/3 

(lob) = in (z/2)I,1/3(z) - (z/2)13{ -.973 500 44 + .201 347 58 (z/2)2 

+ .259 796 06 (z/2)4 + .048 052 (z/2)6 + * * }. 

These expressions provide a convenient means for evaluating vI^(z)/lv, 
V = ?1 in the vicinity of the origin. The retention of only those terms explicitly 
written out in (lOa-b) insures an accuracy of four decimal places even for values of 
z comparable to unity. 

3. Construction of the Tables. It was found most convenient to construct the 
tables of HIP(z)/a v, v = ?t 13 through numerical differentiation of the existing NBS 
Tables for IP(z), v = 41, ?4-, 2h4, +% (see [4]). 

The standard Lagrange interpolation formula for a function S( v, z) given at the 
tabular points vP( = -, , +?) may be written as 

(11) S(v, z) = ?(vi , v)S(vi , Z) 
vi 

where 

J (v-Vi) 
2(pi, v) = i 

(v -pvi) I( - pi) 

Differentiation then yields 

(12) =aS(vz) = Z (viv)Z) 
ap v=+1/3 vi a' v=+1/3 

In the present instance the detailed computations lead to the expressions 

'3S(v, z)I 
av v=+1/3 

= -.112 619 407 S(-3, z) + .243 315 508 S( 23, z) 
- 1.5 S(- 1, z) + 1.800 865 801 S(-4, z) 

-12.606 060 606 S(4, z) + 11.737 362 637 S(1, z) 

+ .729 946 524 S(2, z) - .292 810 458 S(Q, z), 
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as(v, z) 
3z V=-1/3 

= .292 810 458 S( ,z) - .729 946 524 S( ,z) 

(13b) - 11.737 362 637 S(-3, z) + 12.606 060 606 S( -a1, z) 

-1.800 865 801 SQL, z) + 1.5 S(3, z) 
-.243 315 508 S(2Z, z) + .112 619 407 S(3, z). 

Comparison with (6) indicates that in the interval .01 < z ? 1.00 the identification 

(14) S(v, z) -> Z-VI(Z) 

yields the "smoothest" differentiation, that is, minimal truncation errors. This may 
also be confirmed by analytical error estimates. Accordingly, in the interval 
.01 ? z ? 1.00 the tables of aIp(z)/la, v = 43 were actually computed from the 
expressions 

(15a) aI(z) 1/3 (aS(v ) ) +ln(z)11/3(z); 
asV P-+1/3 asV P=+1/3 

(15b) aI (z) | -1/3 (aS(v) Z) v1) + ln(z)_1/3(z). 
av P=-1/3 av V==-1/3 

The entire sequence (14) > (13a-b) -> (15a-b) was carried out automatically 
on an IBM 1620. 

The results of this run were spot checked at z = 1, .3, .11, .01 against the cor- 
responding values derived from the series (10a-b); the agreement in each case was 
to better than 4 decimal places.* 

In the interval 1.01,w_ z < 5.00, the interpolation function was not modified, 
that is, we used the simple identification 

(16) S(v, z) -IVW; 

the auxiliary computations (14) and (15a-b) could therefore be omitted in this 
range. The analytical error estimates (Section 4) assure an accuracy of better than 
?t2 X 10-4 in this portion of the tables. The computations were not continued past 
z = 5 because shortly beyond this point the limited capacity of the machine program 
(8 significant figures) began to introduce truncation errors into the fourth decimal 
place. 

4. Error Bounds. The numerical differentiation (12) is subject to the error [5] 

1 a 38 
(17) E(?4-, Z) = -HI (?41- vi S(V, Z) 8! viVV 

* ,I(.o v =-1 is an exceptional case since 4D accuracy requires 6 significant figures; 
a, 

this table entry was computed from the series (10b). As a further precaution the entire range 
.01 < z < .11 was checked with the series for v = - 3; no further changes were necessary. The- 
basic reason for this difficulty lies in the divergence of aI,(z)/ov for v < 0 and z -* 0 [compare 
(9)]. 
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where the prime indicates the omission of the zero term, vi = i 3; and vo denotes 
some number lying in the interval [-3, +?]. If we make the identification (16), we 
find that the upper bound for the error may be put into the form 

(18) 1~~~ X10' 9 >K O Mf 
,() 3~- < V< + 3 (18) - s 3 Z) I < 8! Max {a8I(),-4_V_+4 3 ~8! ~ aV8 K' 

The problem therefore becomes one of finding majorants for the derivatives of 
modified Bessel functions. We approach this problem by recalling the identity 
(Laplace integral) 

(z/2 ) 2(m+v) ea(z/2)2 +00 ei(z12)2t Re{ v+m + 1 > 0 
(19) (Z22m _e f dt a Re> m0 ~ 0 ) (v+m+1) 2- J00 (aj+it)v+m+l' ImJz} = 0, ZO. 

which-when substituted into (2) allows its conversion to an integral representation. 
After the usual (justifiable) interchange of sum and integral we find 

e f 'Z (1 1aT (20) IV(z) = 2-L dr(a + i? ) exp { La - + + ir((l-a' + ; 

where a = dz/2, and in the present instance a > 0. 
From (20) it follows that 

dN eaz/2 +oo 

-A IV(z) - 2 J dr [-ln(a + i)] (a + i v) 
avN 00 

, 

(21) X exp {2 [a2 + r2 ? T (1 a2 + r2)]} 

This representation seems to be a particularly suitable starting point for the con- 
struction of tractable upper bounds.* 

We first note that as an immediate consequence of (21-) we have the inequality 

I, (Z) < dT + exp zf 2 (22) (9V_ a l)ea+ir)IN 2 a2 + T2 (22) 
~~~~~~~~~(a 2+ T2) 2 

It is convenient to split this integration into two parts: 

(23) f- f + Q1f+?Q2; M>O. 

Suppose we consider Qi and Q2 separately. For our purposes it will be sufficient if the 
integrand of Q, is first partially reduced through elementary applications of the 
mean value theorem. The result may be written 

2M v+1 

(24) Q1 < e2a I ln(a + iMN J dT(a2 + T27-. 

A-M Go 

With the further overestimate X j this may be simplified to the form 

o r 

(25) Qi < eTa V/Y i In (a + iM) IN 2) > 0. 
a,, (p_?) 

* The special case N = 0 is discussed in [61. 



166 THOMAS ERBER AND ALAN GORDON 

Q2 may be treated by similar methods. We first remove the exponential factor 
(mean value theorem) and obtain the bound 

(26) Q2 < exp{az/2(M2 + a2)} f dr Iln (a + T) 

M (a2 + r2) 2 

Now it is convenient to impose the condition 

(27) M >> a. 

The leading term of the integral, therefore, is 

dT T-(v+l)(ln Tr)N. 

A simple change of variables then leads to the sequence 

(28 | P1 1 0?? r(N + 1) (28) f T dT i-~'(In r) do- -_e~ < ,N1 ) > 0, 

which yields a concise upper bound for Q2 . 
Combining (22)-(28), we finally obtain the desired majorant: 

(29) | dvN (z) i < [ ve e z2a(ln M)N ( az/2M2 +(N + 1)1 
apN 7r a ___ +N 

M>> a > 0, N > O. v > O, z > O. 

For our present applications, where N = 8 and 0 < z < 5, it is convenient to fix a 
so that a ~ 1. Despite (27), it can then evidently be arranged so that 

(ln A)8 << r(9). 

Under these circumstances it is obvious that the second term on the right hand side 
of (29) gives the major contribution. If we now combine (18) and (29) we find 
that the error involved in the numerical differentiation is bounded from above by 
the expression: 

(30) Ei 3(,Z) z - 10-3 eZ12/12. 

One difficulty remains: In order to be certain of having taken into account the 
worst possible case in (18), v must be free to range over the entire interval 
[- 3, +4]; on the other hand, it is obvious from (30) that it would be advantageous 
to have v as large as possible. Worse yet, it is clear from (29) that the entire mathe- 
matical argument is restricted by the condition v > 0. In order to resolve this 
difficulty it is necessary to draw on one more property of I,(z): We recall that 
I,,(z), I,,+,(z), and I,,+2(z) are connected by the simple recurrence relation 

(31) Is(z) = 2( + 1) IA+1(z) + IA+2(z). z 
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By iterating such "step-up" equations it is possible to relate I,_,(z), where for 
example i - 1 lies in the interval [-4, 01, to I,+2(z) where the index now ranges 
over [21, 3]. The differential estimates (29) may then advantageously be applied 
to the Bessel functions of higher index. The detailed relations required in the present 
context are 

8 

a 4 a84 d8I#_i(Z) = 3 - 8M(M ? 1 )G(M + 2)I#+2(Z) } 

(32) + V I (A + 1)I'1+2(z)} + - W{ + 1)I;+3(z)} 

a8 
+ a 8I;+3(Z); 4, _<= _ 

Carrying out the differentiations and applying (29) (legitimately now!) to each 
term on the right hand side one easily finds that the dominant contribution comes 
from the z-3 term. The final error bound is, therefore, given by 

zl (33) ~ ~ ~ e: 1z t l04 

Since the interpolation (13a-b) and series (lOa-b) check to better than 4 decimal 
places at z = 1, we are confident that (33) is in fact too pessimistic. The sensitive 
z-dependence is, of course, the basic reason for resorting to the detour (14) in per- 
forming the numerical differentiation for the range .01 _ z < 1.00. 

The recurrence relation (31) as well as the Wronskian 

a 
tIv(z) (z) + Iv(z) aa I,-,(Z) 

(34) 
- - {I-,v(z) }I-I,(z) - I-(z) - {Iv-i(z)} =I -- cos (Wv) 

OP ~~~~z 

may be used to extend and check the tables. 
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V 3 V-3 V 3 V-3 

0 0 - X 0.45 -0.9813 -0.3681 
0.01 -0.9893 -17.1897 .46 .9754 .3439 

.02 -1.0793 -11.2693 .47 .9695 .3208 

.03 .1236 -8.6328 .48 .9637 .2986 

.04 .1494 -7.0634 .49 .9579 .2772 

0.05 -1.1653 -5.9965 0.50 -0.9522 -0.2566 
.06 .1752 -5.2128 .51 .9465 .2369 
.07 .1810 -4.6071 .52 .9409 .2179 
.08 .1840 -4.1218 .53 .9353 .1996 
.09 .1849 -3.7223 .54 .9298 .1819 

0.10 -1.1842 -3.3866 0.55 -0.9244 -0.1649 
.11 .1824 -3.0996 .56 .9190 .1485 
.12 .1796 -2.8510 .57 .9137 .1327 
.13 .1761 -2.6332 .58 .9084 .1174 
.14 .1719 -2.4405 .59 .9032 .1027 

0.15 -1.1673 -2.2686 0.60 -0.8980 -0.0884 
.16 .1623 -2.1142 .61 .8929 .0747 
.17 .1570 -1.9746 .62 .8878 .0614 
.18 .1514 .8478 .63 .8828 .0485 
.19 .1456 .7319 .64 .8779 .0360 

0.20 -1.1396 -1.6257 0.65 -0.8729 -0.0240 
.21 .1335 .5278 .66 .8681 .0123 
.22 .1273 .4374 .67 .8633 -0.0010 
.23 .1210 .3536 .68 .8586 +0.0100 
.24 .1146 .2757 .69 .8539 .0206 

0.25 -1.1082 -1.2031 0.70 -0.8493 +0.0309 
.26 .1017 .1352 .71 .8447 .0409 
.27 .0952 .0716 .72 .8402 .0506 
.28 .0887 -1.0119 .73 .8357 .0600 
.29 .0821 -0.9559 .74 .8312 .0691 

0.30 -1.0756 -0.9030 0.75 -0.8269 +0.0779 
.31 .0691 .8531 .76 .8226 .0865 
.32 .0626 .8060 .77 .8183 .0949 
.33 .0561 .7614 .78 .8141 .1030 
.34 . .0497 .7191 .79 .8099 .1109 

0.35 -1.0433 -0.6789 0.80 -0.8058 +0.1186 
.36 .0369 .6408 .81 .8017 .1261 
.37 .0305 .6045 .82 .7977 .1333 
.38 .0242 .5700 .83 .7937 .1404 
.39 .0179 .5371 .84 .7898 .1473 

0.40 -1.0117 -0.5057 0.85 -0.7859 +0.1540 
.41 -1.0056 .4757 .86 .7821 .1605 
.42 -0.9994 .4470 .87 .7783 .1668 
.43 .9933 .4195 .88 .7745 .1730 
.44 .9873 .3933 .89 .7708 .1790 



z 
a 1- (z)/av a I,(z)/OV, i z OaI,(z)lav, i l(z)/Ov, 

0.90 -0.7672 +0.1849 2.75 -0.6479 +0.5979 
.91 .7636 .1906 .80 .6570 .6098 
.92 .7600 .1962 .85 .6666 .6222 
.93 .7565) .2016 .90 .6769 .6351 
.94 .7531 .2069 .95 .6879 .6485 

0.95 -0.7497 +0.2121 3.00 -0.6996 +0.6624 
.96 .7463 .2171 .05 .7119 .6768 
.97 .7429 .2221 .10 .7249 .6919 
.98 .7397 .2269 .15 .7387 .7075 
.99 .7364 .2316 .20 .7532 .7238 

1.00 -0.7332 +0.2362 3.25 -0.7685 +0.7407 
.05 .7178 .2576 .30 .7845 .7583 
.10 .7034 .2767 .35 .8013 .7766 
.15 .6900 .2939 .40 .8190 .7957 
.20 .6776 .3095 .45 .8375 .8155 

1.25 -0.6661 +0.3237 3.50 -0.8569 +0.8361 
.30 .6554 .3366 .55 .8771 .8575 
.35 .6456 .3485 .60 .8983 .8798 
.40 .6366 .3596 .65 .9205 .9030 
.45 .6284 .3699 .70 .9436 .9271 

1.50 -0.6210 +0.3796 3.75 -0.9677 +0.9521 
.55 .6144 .3888 .80 .9929 .9782 
.60 .6085 .3975 .85 -1.0192 +1.0052 
.65 .6033 .4059 .90 .0466 .0334 
.70 .5987 .4140 .95 .0752 .0627 

1.75 -0.5949 +0.4219 4.00 -1.1049 +1.0931 
.80 .5917 .4296 .05 .1359 .1248 
.85 .5892 .4373 .10 .1682 .1577 
.90 .5873 .4449 .15 .2018 .1919 
.95 .5861 .4524 .20 .2368 .2274 

2.00 -0.5854 +0.4600 4.25 -1.2733 +1.2644 
.05 .5854 .4677 .30 .3112 .3028 
.10 .5860 .4755 .35 .3507 .3427 
.15 .5872 .4834 .40 .3918 .3843 
.20 .5890 .4914 .45 .4345 .4274 

2.25 -0.5914 +0.4997 4.50 -1.4790 +1.4723 
.30 .5943 .5081 .55 .5253 .5189 
.35 .5979 .5168 .60 .5734 .5674 
.40 .6020 .5258 .65 .6235 .6178 
.45 .6068 .5350 .70 .6756 .6702 

2.50 -0.6121 +0.5446 4.75 -1.7298 +1.7247 
.55 .6181 .5545 .80 .7861 .7813 
.60 .6246 .5648 .85 .8447 .8402 
.65 .6318 .5754 .90 .9057 .9014 
.70 .6395 .5865 .95 - 1.9692 +1.9651 

5.00 -2.0351 +2.0312 
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